

EMO6AX-C1 模块用户手册

Version 2.1

2020年4月14日

©Copyright 2020 Leadshine Technology Co., Ltd.

All Rights Reserved.

本手册版权归深圳市雷赛控制技术有限公司所有,未经本公司书面许可,任何人不得翻印、 翻译和抄袭本手册中的任何内容。

本手册中的信息资料仅供参考。由于改进设计和功能等原因, 雷赛公司保留对本资料的最 终解释权, 内容如有更改, 恕不另行通知。

修改记录

を か 口	版本	修改说明		+ni ±d i
修改日期		原来内容	更新内容	拟制人
20170414	V2. 0		初始版本	产品部
20200414	V2. 1		重新排版	产品部

目 录

第1章 产品概述	5
1.1 产品简介	5
1.2 产品特点	5
1.3 技术规格	6
1.4 安装使用	7
第 2 章 产品外观及硬件接线	8
2.1 产品外观	8
2.2 接口分布及针脚定义	8
2.2.1 JP1 电源接口	9
2.2.2 JN3、JN5 接口定义	10
2.2.3 JN1 接口定义	10
2.2.4 JN2 接口定义	10
2.2.5 SW0 接口定义	11
2.2.6 SW1 接口定义	11
2.2.7 SW2 接口定义	12
2.3 接口电路	
2.3.1 模拟量输入信号接口	
2.3.2 模拟量输出信号接口	
2.4 数据格式	
2.4.1 模拟量输入数据格式	
2.4.2 模拟量输出数据格式	14
第3章 对象字典	15
3.1 通用参数	15
3.2 制造商参数设置	17
3.3 参数保存	
3.4 设备参数	
3.5 错误码及处理	20
第4章 指示灯定义及说明	22
4.1 指示灯定义	22
4.2 指示灯状态	22
4.3 指示灯错误状态的清除	23
第5章 使用案例	24
5.1 IEC 示例	24
5.1.1 硬件连接	24
5.1.2 添加主站	25
5.1.3 添加管理器	26
5.1.4 主从站配置	28

5.1.5	应用示例	30
5.2 BASI	IC 示例	32
5.2.1	硬件连接	32
5.2.2	添加模块	33
5.2.3	应用例程	36

第1章 产品概述

1.1 产品简介

雷赛 EM06AX-C1 模块是一款高性能、高可靠性的 CAN 总线 AD/DA 模块,具有 4 路 AD 输入和 2 路 DA 输出。输入输出接口均采用光电隔离和滤波技术,可以有效隔离外部电路的干扰,以提高系统的可靠性。

EM06AX-C1模块,主要用于与雷赛公司支持CANopen总线通讯的控制器和支持CANopen总线的控制卡配套使用。EM06AX-C1具有4路模拟量输入接口,2路模拟量输出接口。支持电压、电流模式,分辨率为12位。

1.2 产品特点

- ① 4路模拟量输入:提供过压保护,抗干扰滤波
- ② 2路模拟量输出:提供过压、过流、短路保护
- ③ 内部 24V 隔离电源,具有直流滤波器
- ④ 铁壳安装,插拔式接线端子

1.3 技术规格

EM06AX-C1 模拟量模块的主要技术指标如下:

表 1.1 EMO6AX-C1 规格指标

大 1.1 Laioona O1 /96刊 J日初					
模拟/数字(AD)部分	电压输入	电流输入			
电源电压	24Vdc (22Vdc~28Vdc)				
模拟信号输入通道		4 路			
输入范围	直流 -10V~10V	直流 4mA~20mA			
分辨率	12 位 (1 LSB = 5mV)	12位(1 LSB = 5μA)			
输入阻抗	100kΩ以上	250 Ω			
精度(25℃)	土满量程的 0.5%	土满量程的 1%			
精度(0~55℃)	土满量程的 1%	土满量程的 2%			
极限范围	直流 -12V~12V	直流 30mA(瞬间) 24mA(持续)			
响应时间	1ms	×通道数			
数字/模拟(DA)部分	电压输出	电流输出			
模拟信号输出通道		2 路			
输出范围	直流 -10V~10V	直流 4mA~20mA			
分辨率	12位(1 LSB = 5mV)	12位 (1 LSB = 5μA)			
精度(25℃)	土满量程的 0.5%	土满量程的 1%			
精度(0~55℃)	土满量程的 1%	土满量程的 2%			
响应时间	1ms×通道数	2ms×通道数			
最大负载	≥5kΩ以上	≤500 Ω			
一般规格					
功率消耗	3W @ 24Vdc				
隔离方式	I/O端子与电源之间隔离,I/O端子之间非隔离,通信接口与电源之间隔离				

1.4 安装使用

EM06AX-C1 为独立式模拟量扩展模块,采用定位孔的方式安装,安装尺寸如图 1.1、1.2 所示(单位均为 mm):

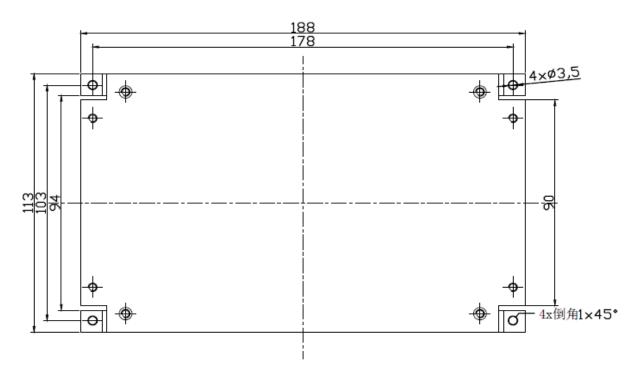


图 1.1 安装底板俯视图

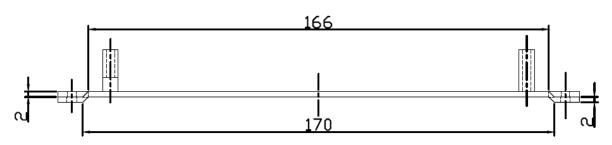


图 1.2 安装底板正视图

第2章 产品外观及硬件接线

2.1 产品外观

雷赛 EM06AX-C1 CANopen 总线模拟量扩展模块提供 4 路模拟输入接口、2 路模拟输出接口,带有两个立式 RJ45 型 CAN 扩展口,模块波特率拨码开关,模块站号拨码开关,终端电阻选择开关等,如图 2.1 所示。

图 2.1 EMO6AX-C1 模块外观图

2.2 接口分布及针脚定义

雷赛 EM06AX-C1 CANopen 总线模拟量扩展模块硬件接口分布如图 2.2 所示,各接口定义如表 2.1 所示。

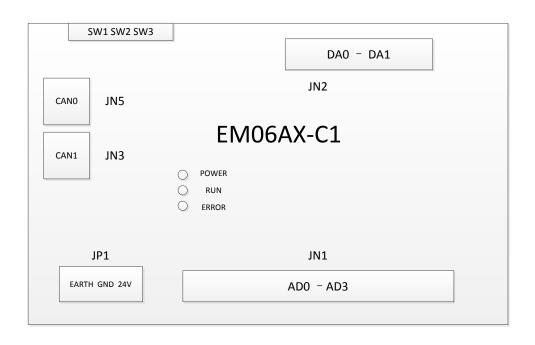


图 2.2 EM06AX-C1 模拟量扩展模块硬件分布图

名称	功能介绍		
JP1	直流 24V 电源输入		
JN3	CAN1 总线接口		
JN5	CAN0 总线接口		
JN1	模拟量输入		
JN2	模拟量输出		
SW0	70 CAN 波特率选择开关		
SW1	CAN ID 站号选择开关(有效范围 1-15)		
SW2	5W2 终端电阻选择开关		

表 2.1 接口功能简述

2.2.1 JP1 电源接口

JP1 为 24V 电源输入接口,标有 24V 的端子接+24V,标有 GND 的端子接外部电源地。 EARTH 为外壳地接口。

2.2.2 JN3、JN5 接口定义

接口 JN3、JN5 是 CAN 总线接口,采用 RJ45 端子,其引脚号和信号对应关系见表 2.2 所示: (备注:两个 CAN 总线接口不区分输入接口和输出接口)

JN3 信号	信号描述	JN5 信号	信号描述
JN3_1	CAN_P	JN5_1	CAN_P
JN3_2	CAN_N	JN5_2	CAN_N
JN3_3	CAN_GND	JN5_3	CAN_GND
JN3_4	NC	JN5_4	NC
JN3_5	NC	JN5_5	NC
JN3_6	SHEID_GND	JN5_6	SHEID_GND
JN3_7	CAN_GND	JN5_7	CAN_GND
JN3_8	CAN_5V	JN5_8	CAN_5V

表 2.2 接口JN3、JN5 引脚号和信号关系表

2.2.3 JN1 接口定义

JN1 引脚具有 4 路模拟量输入(CH0-CH3),对应的引脚分布如下:

2 5 7 9 1 3 4 6 8 10 11 12 **AGND** VIN0 IIN0 VIN1 IIN1 VIN2 IIN2 VIN3 IIN3 **AGND** AGND **AGND** CH0 CH3 CH1 CH2

表 2.3 接口JN1 引脚分布

2.2.4 JN2 接口定义

JN2 引脚具有 2 路模拟量输出(CH0-CH1),对应的引脚分布如下:

1 2 3 5 6 8 SGIOUT1 **AGND** IOUT0 VOUT0 SG AGND VOUT1 CH0 CH1

表 2.4 接口JN2 引脚分布

2.2.5 SWO 接口定义

SW0 接口是 CAN 通讯波特率设置开关,拨码示意图如图 2.3 所示。目前支持 4 种通讯波特率,其速率设置与硬件拨码状态见表 2.5 所示:

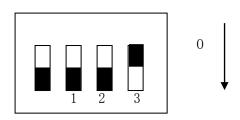


图 2.3 拨码示意图

SW0 波特率设置 PIN₁ PIN₂ PIN3 PIN4 波特率 OFF OFF **OFF OFF** 1Mbps ON **OFF OFF** OFF 500Kbps **OFF** ON **OFF OFF** 250Kbps ON ON OFF OFF 125Kbps

表 2.5 SWO 引脚号和信号关系表

硬件拨码在其他状态下,模块将会通过错误指示灯报错,错误指示灯的状态请查阅4.2节。

2.2.6 SW1 接口定义

SW1 接口是 CAN ID 站号设置开关, 站号设置范围为 1~15, 其硬件拨码状态与站号对应 关系如表 2.6 所示:

SW1 CAN ID 站号设置				
PIN1	PIN2	PIN3	PIN4	站号
ON	OFF	OFF	OFF	1
OFF	ON	OFF	OFF	2
ON	ON	OFF	OFF	3
OFF	OFF	ON	OFF	4
ON	OFF	ON	OFF	5

表 2.6 SW1 引脚号和信号关系表

OFF	ON	ON	OFF	6
ON	ON	ON	OFF	7
OFF	OFF	OFF	ON	8
ON	OFF	OFF	ON	9
OFF	ON	OFF	ON	10
ON	ON	OFF	ON	11
OFF	OFF	ON	ON	12
ON	OFF	ON	ON	13
OFF	ON	ON	ON	14
ON	ON	ON	ON	15

注 意:目前 CAN ID 站号支持 1-15,其他状态下模块将会报错,错误指示灯的状态请查 阅 4.2 节。

2.2.7 SW2 接口定义

SW2 接口用于设置扩展模块终端电阻,其硬件拨码状态和含义对应关系见表 2.7 所示:

 SW2 终端电阻及模式选择

 PIN1
 PIN2
 PIN3
 PIN4
 含义

 x
 x
 x
 OFF
 0Ω

 x
 x
 x
 ON
 接入120Ω终端电阻

表 2.7 SW2 引脚号和信号关系表

注 意: X表示当前保留引脚。

2.3 接口电路

2.3.1 模拟量输入信号接口

EM06AX-C1 为用户提供 4 路模拟量输入接口,用于传感器信号或其它信号的输入。其电源电路加有隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。

模拟量电压输入信号接线图如图 2.4 所示:

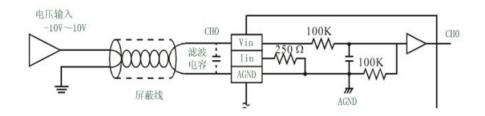


图 2.4 模拟量电压输入接线图

模拟量电流输入信号接线图如图 2.5 所示:

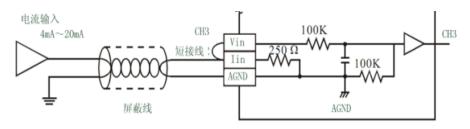


图 2.5 模拟量电流输入接线图

注 意:如果输入是电流信号,则需要将该输入的 VIN 和 IIN 短接;如果输入是电压信号,用户可以在输入端并联一个滤波电容以加强抗干扰能力。

2.3.2 模拟量输出信号接口

模块为用户提供2路模拟量输出接口,用于传感器信号或其它信号的输出。其电源电路加有隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。

模拟量电压输出信号接线图如图 2.6 所示:

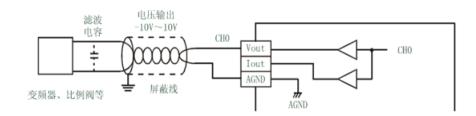


图 2.6 模拟量电压输出接线图

模拟量电流输出信号接线图如图 2.7 所示:

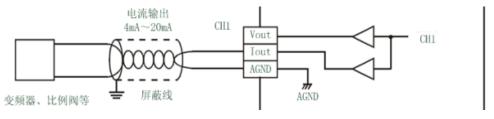


图 2.7 模拟量电流输出接线图

2.4 数据格式

2.4.1 模拟量输入数据格式

表 2.8 模拟量输入数据格式

	实际输入范围	软件数值范围
电压数据格式	-10V ~ 10 V	-10000 ~ 10000
电流数据格式	4mA ~ 20mA	4000 ~ 20000

2.4.2 模拟量输出数据格式

表 2.9 模拟量输出数据格式

	实际输出范围	软件数值范围
电压数据格式	-10V ~ 10 V	-10000 ~ 10000
电流数据格式	4mA ~ 20mA	4000 ~ 20000

第3章 对象字典

3.1 通用参数

索引	子索引	名称	数据类型	访问	描述
				属性	
1000H	00H	Device type	Unsigned32	ro	Device type and profile(设备类型)
					初始值: 0xF0191
1001H	00H	Error register	Unsigned8	ro	Error register(错误寄存器)
					初始值: 0x00
1003H		Predefined error field	Unsigned8	rw	
	00H	Number of errors	Unsigned8	rw	Number of error (设备当前出现的错误
					个数)
	01H-04H	Error field	Unsigned32	ro	Error number(错误码)
1005H	00H	COB-ID SYNC	Unsigned32	rw	Identifier of the synchronizationobject
1006Н	00H	Sync time	Unsigned32	rw	Sync time (同步报文的周期)
1007H	00H	Sync window length	Unsigned32	rw	Time window for synchronous PDOs in
					μS(同步 PDO 的窗口时间)
1008H	00H	Mfg. device name	Vis String8	ro	Manufacturer's designation
					初始值: EM06AX-C1
1009H	00H	Mfg. hardware version	Vis String8	ro	Hardware version
					初始值: V1.01
100AH	00H	Mfg. software version	Vis String8	ro	Software version
					初始值: V1.01
100CH	00H	Guard time	Unsigned16	rw	Time span for Node Guarding [ms] (节
					点保护时间)
100DH	00H	Life time factor	Unsigned8	rw	Repeat factor for Node Guarding
1010H		Store parameters	Unsigned32		Store parameters(保存参数)

	00H	Largest sub-index	Unsigned8	ro	Largest sub-index supported » 04h
	01H	Save all parameters	Unsigned32	rw	Save all parameters(保存所有参数)
	02H	Save communication	Unsigned32	rw	Save Communication Parameters(保存
					通讯参数)
	03H	Save application	Unsigned32	rw	Save Application Parameters (保存应用
					参数)
	04H	Save manufacturer	Unsigned32	rw	Save Manufacturer Parameters(保存制
					造商参数)
1011H		Restore defaults	Unsigned32		Restore defaults as group
	00H	Largest sub-index	Unsigned8	ro	Largest sub-index supported » 04h
	01H	Restore all defaults	Unsigned32	rw	Restore all defaults
	02H	Restore communication	Unsigned32	rw	Restore Communication defaults
	03H	Restore application	Unsigned32	rw	Restore Application defaults
	04H	Restore manufacturer	Unsigned32	rw	Restore Manufacturer defaults
1014H	00H	COB-ID EMCY	Unsigned32	rw	80h + Node ID(紧急报文的 COB-ID)
1017H	00H	Producer Heartbeat	Unsigned16	rw	Time interval for producer Heartbeat(心
		Time			跳报文时间)
1018H		Identity		ro	(设备信息)
	00H	Largest sub-index	Unsigned8	ro	Largest sub-index supported »04h
	01H	Vendor ID	Unsigned32	ro	Vendor ID
					初始值: 0x00000331
	02H	Product code	Unsigned32	ro	Product code
					初始值: 0x00001016
	03H	Revision number	Unsigned32	ro	Revision number
					始值: 101
	04H	Serial number	Unsigned32	ro	Serial number
					初始值: 0x00001006

3.2 制造商参数设置

索引	子索引	名称	数据类型	访问属性	初始值	描述
2002H	00H		Unsigned8	ro	0x2	设置子索引个数
	01H	P1-1	Unsigned32	rw	0	设置 AD0 工作模式:
						0: 电压模式
						1: 电流模式
	02 H	P1-2	Unsigned32	rw	0x28	设置 AD0 数据预处理个数
2003H	00H		Unsigned8	ro	0x2	设置子索引个数
	01H	P2-1	Unsigned32	rw	0	设置 AD1 工作模式:
						0: 电压模式
						1: 电流模式
	02 H	P2-2	Unsigned32	rw	0x28	设置AD0数据预处理个数
2004H	00H		Unsigned8	ro	0x2	设置子索引个数
	01H	P3-1	Unsigned32	rw	0	设置AD2工作模式:
						0: 电压模式
						1: 电流模式
	02 H	P3-2	Unsigned32	rw	0x28	设置AD0数据预处理个数
2005H	00H		Unsigned8	ro	0x2	设置子索引个数
	01H	P4-1	Unsigned32	rw	0	设置AD3工作模式:
						0: 电压模式
						1: 电流模式
	02 H	P4-2	Unsigned32	rw	0x28	设置AD0数据预处理个数
2006Н	00H		Unsigned32	rw	0x1	设置子索引个数
	01H	P5-1	Unsigned32	rw	0	设置DA0值类型:
						0:数据为电压
						1: 数据为电流
2007H	00H		Unsigned32	rw	0x1	设置子索引个数

	01H	P6-1	Unsigned32	rw	0	设置DA1值类型:	
						0: 数据为电压	
						1: 数据为电流	
2008H	00H		Unsigned32	rw	0x2	设置子索引个数	
	01H	P7-1	Unsigned32	rw	0x0F	设置AD是否启用,	
						将对应位设置为1表示启用	
						Bit0: 用于设置AD0是否启用	
						Bit1: 用于设置AD1是否启用	
						Bit2: 用于设置AD2是否启用	
						Bit3: 用于设置AD3是否启用	
	02 H	P7-2	Unsigned32	rw	0	备用	

3.3 参数保存

修改制造商参数对象字典后,需要往索引 0x1010 子索引 0x04 中(该子索引数据长度为 32) 写入 0x01,这些参数才会保存至 flash 中。参数保存至 Flash 中,再次重新上电启动的时候,系统自动加载修改后的参数。如果不将参数保存,再次重新上电启动的时候,系统将加载修改前的参数。

初始值的恢复: 若往索引 0x1010 子索引 0x04 (该子索引数据长度为 32) 写入 0x14,制 造商参数会恢复初始值(即恢复为制造商参数列表中的初始值列的数据)。

3.4 设备参数

索引	子索引	名称	数据类型	访问	描述
				属性	
1400H		RPDO1 parameter			1st receive PDO parameter(第一个接
					收 PDO 参数)
	00H	Largest sub-index	Unsigned8	ro	Largest sub-index supported » 05h(最大

					子索引个数-5个)
	01H	COB-ID used	Unsigned32	rw	COB-ID used: 200h + Node ID (PDO
					的 COB-ID 号)
	02H	Transmission type	Unsigned8	rw	Default type = 1 (synchronous) (传输类
					型)
	03H	Inhibit time	Unsigned16	rw	Default = 0 (禁止时间)
	05H	Event timer	Unsigned16	rw	Default = 0 (时间时间)
1600		RPDO1 mapping			PDO mapping for RPDO1, settings(第
		parameter			一个 PDO 的映射参数)
	00H	# of mapped objects	Unsigned8	rw	Number of mapped objects, range 1 –
					64 (映射对象个数)
	01H-08H	Application Objects	Unsigned32	rw	R_PDO1 mapping application objects
					(第一个接收 PDO 的映射应用对象)
1800H		TPDO1 parameter			1st transmit PDO parameter(第一个发
					送 PDO 参数)
	00H	COB-ID used	Unsigned8	ro	Largest sub-index supported » 05h(最大
					子索引个数 5 个)
	01H	COB-ID used	Unsigned32	rw	COB-ID used: 180h + Node ID (PDO
					的 COB-ID 号)
	02H	Transmission type	Unsigned8	rw	Default type = 1 (synchronous) (传输类
					型)
	03H	Inhibit time	Unsigned16	rw	Default = 0 (禁止时间)
	05H	Event timer	Unsigned16	rw	Default = 0 (事件时间)
1A00H		TPDO1 mapping			PDO mapping for TPDO1, settings(第
		parameter			一个发送 PDO 的映射参数)
	00H	# of mapped objects	Unsigned8	rw	Number of mapped objects, range 1 –
					64 (映射参数个数)
	01-08H	Application Objects	Unsigned32	rw	T_PDO1 mapping application objects

					(第一个发送 PDO 的映射应用参数)
6130H		Read AD input			
	00H		Unsigned8		number of entries
	01H	read AD0 input	Unsigned16	ro	用于读入 AD0 值
	02H	read AD1 input	Unsigned16	ro	用于读入 AD1 值
	03H	read AD2 input	Unsigned16	ro	用于读入 AD2 值
	04H	read AD3 input	Unsigned16	ro	用于读入 AD3 值
6330H		Write DA			用于设置 DA
	00H		Unsigned8		number of entries
	01H	write output 16-bit	Unsigned16	rw	用于设置 DA0 的值
	02H	write output 16-bit	Unsigned16	rw	用于设置 DA1 的值

3.5 错误码及处理

(1) 错误码描述

对象字典的索引 1001H 和 1003H 用于保存错误相关信息。

索引	子索引	名称	数据类型	访问	描述
				属性	
1001H		Error register	Unsigned8	ro	Error register
1003H		Predefined error field	Unsigned8	rw	Number of error entries
	00H	Number of errors	Unsigned8	rw	Number of error entries
	01H-04H	Error field	Unsigned32	ro	Error number

索引 1001H:错误寄存器,包含错误类型信息。若模块发生错误,该参数作为紧急报文的一部分,发送给主站。该参数的错误值意义如下表:

错误值	描述
00H	没有错误
01H	通用错误
11H	CAN 通讯错误

81H	制造商制定错误
-----	---------

索引 1003H: 用于存储当前的错误信息。

子索引 00H, 用于表示当前存储的错误个数, 本模块中, 可以存储 4 个错误。

子索引 01H-04H,用于存储错误码,最新的错误码,总是存储在 01H 中,之前的错误码一次向下移动。错误码结构如下所示:

MSB				LSB
31	16	15		0
制造商指定信	息		错误代码	

本模块的错误码如下表:

错误码	代码功能描述	
0000Н	没有错误	
2310Н	输出端口电流过大	
3120H	主电压过低	
8110H	CAN 报文过载	
8120H	CAN 控制器处于被动错误模式	
8130H	节点保护或心跳报文错误	
8140H	CAN 控制器从关闭状态恢复	
8210H	PDO 长度错误	

(2) 错误码发送

当模块出现错误后,会通过紧急指示对象将错误码发送给主站。一个紧急报文由8字节组成,格式如下:

COB-ID	Byte 0-1	Byte 2	Byte 3-7
0090	6 井 2日 4 2 7日	错误寄存器	制造商特定的错误
0x080+Node_ID	错误代码	(对象 0x1001)	区域

(3) 错误码的清除

当模块的所有错误已经排除,需要将已经记录的错误码清除。清除方法:向索引 1003H 的子索引 00H 中写入 0x00H。

第4章 指示灯定义及说明

4.1 指示灯定义

POWER: 电源指示灯,用于指示模块+24V的上电状态。

RUN: 用于指示模块当前的 NMT 状态。RJ45 绿色指示灯与该灯状态一致。

ERROR:用于指示模块的错误状态。RJ45 黄色指示灯与该灯状态一致。

指示灯变化最小时间为 200ms, 循环闪烁周期如图 4.1 描述所示。

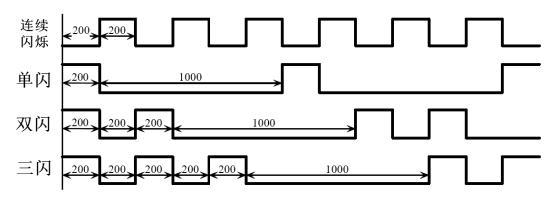


图 4.1 指示灯循环闪烁周期

4.2 指示灯状态

POWER 指示灯状态描述如表 4.1 所示:

表 4.1 POWER指示灯状态

POWER 指示灯	模块上电状态
常灭	模块没上电
常亮	模块已上电

RUN 指示灯循环闪烁描述如表 4.2 所示:

表 4.2 RUN指示灯状态

RUN 指示灯	设备状态	描述
常灭	设备初始化错误	错误状态结合错误指示灯

单闪	停止状态	设备处于 NMT 停止状态
连续闪烁	预操作状态	设备处于 NMT 预操作状态
常亮	操作状态	设备处于 NMT 操作状态

ERROR 错误指示灯循环闪烁描述如表 4.3 所示:

表 4.2 错误指示灯状态

ERROR 错误指示灯	设备状态	描述
连续闪烁	设备初始化错误	设备硬件校验错误或设备软硬件不匹配
常灭	没有错误	
常亮	总线关闭	CAN 控制器处于关闭状态
单闪	CAN 警告限制	CAN 总线有错误发生,状态异常
双闪	错误控制事件发生	节点保护错误或心跳报文错误
三闪	设备初始化错误	初始化 CAN 协议错误
其他状态	设备初始化错误	连接指示灯常灭,错误指示灯快速非周期性闪
		烁,表示模块的主板与底座连接异常

4.3 指示灯错误状态的清除

模块发生报警或错误后,错误指示灯会闪烁,清除设备的错误后,指示灯的状态不会自动清除,需要通过设置设备的 NMT 状态才能清除。

操作步骤: ① 向模块发送 NMT 指令(命令字 128),设置模块为预操作状态;

② 向模块发送 NMT 指令(命令字1),设置模块为运行状态。

第5章 使用案例

雷赛模拟量模块 EM06AX-C1 符合 CANopen 标准,是一个标准的 CANopen 从站,通过 CANopen 总线端口可以支持 CANopen 总线主站的扩展使用,如雷赛 SMC600-IEC 系列、PMC300 系列、BAC300 系列和 PAC 系列运动控制器。以下分别以 SMC606-IEC 和 SMC604-BAS 运动控制器作为主站和 EM06AX-C1 作为从站配合使用为例介绍从站的使用方法。其中 SMC606-IEC 示例使用 IEC 编程方式,SMC604-BAS 示例使用 BASIC 编程方式。

5.1 IEC 示例

5.1.1 硬件连接

雷赛 SMC606 控制器的外形如下图 5.1 所示:

图 5.1 SMC606 外形

CAN0/CAN1: CAN 总线通讯接口。

各端口的详细描述请参考 SMC600 系列控制器的使用手册。

设备间的连接:通过超五类带屏蔽层的网线(线序为平行网线)将 SMC606 的 CAN0 口与 EM06AX-C1 的 CAN0 口连接。

模块上的拨码开关,根据后续的操作步骤设置。

5.1.2 添加主站

CANOpen 总线控制器,驱动总线 AD 模块时,首先添加 CANopen 总线。

选择设备右击选择"添加设备"(如图 5.2 所示) => 在弹出的窗口中选择"现场总线" => "CANbus" => "CANbus-3S Smart software Solutiongs GmbH",然后点击添加设备,如图 5.3 所示。

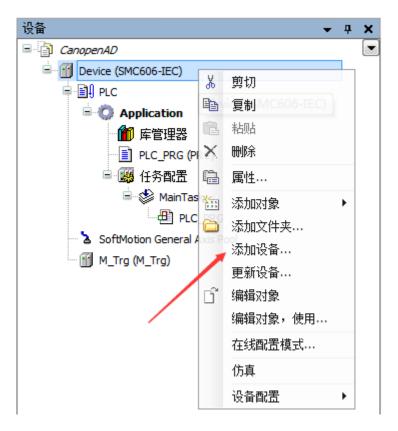


图 5.2 添加设备

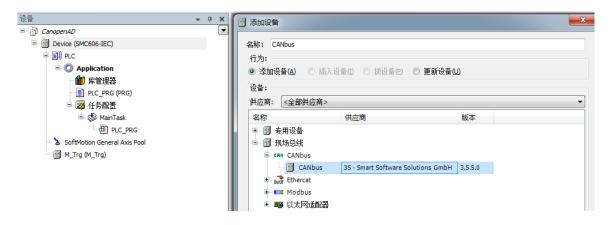


图 5.3 添加 CANopen 总线

5.1.3 添加管理器

选择"CANbus",右击"添加设备"如图 5.4 所示,在弹出的窗口选择"CANopen" => "CANopen 管理器" => "CANopen_Manager",然后点击添加设备得到如图 5.5 所示。

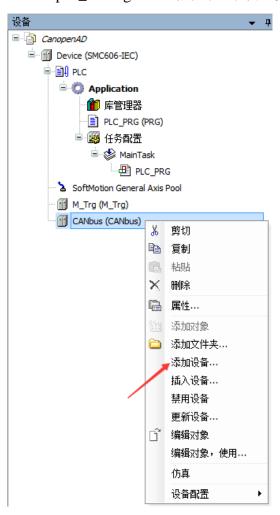


图 5.4 添加 CANopen 设备

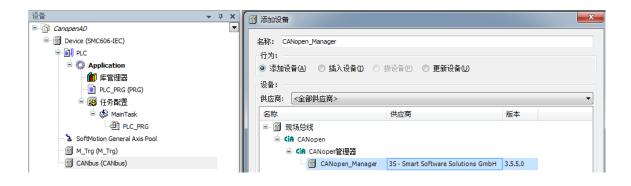


图 5.5 添加 CANopen 管理器

添加模块:

选择 CANopen 管理器, 右击选择"添加设备"如图 5.6 所示, 在弹出的窗口选择"CANopen"

=> "远程设备" => "EM06AX-C1", 然后点击添加设备, 如图 5.7 所示:

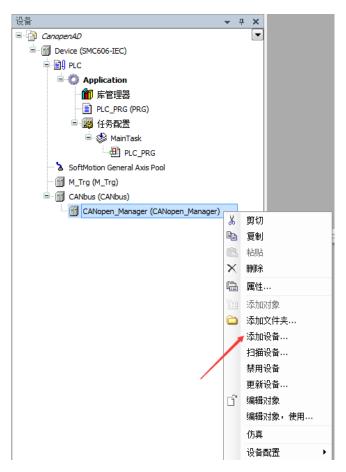


图 5.6 添加从站设备

图 5.7 添加 EM06AX-C1 模块

5.1.4 主从站配置

1) CAN 网络及波特率设置

双击 "CANbus", 进入 CAN 网络配置界面。

CAN 网络配置: SMC606 控制器有两个 CAN 口,本例程中使用 CAN0 口, CANbus 页面中的"网络"设置为 0(如果采用 CAN1 口,则"网络"设置为 1)。

波特率设置: CAN 总线有多档波特率,本例程中使用 1M 的波特率。参数配置完成后,显示界面如图 5.8 所示:

图 5.8 CAN 总线配置页面

2) CAN 主站配置

双击 "CANopen_Manager", 进入 CAN 主站配置界面。

节点 ID:采用默认配置。

同步: 勾选使能同步报文。循环周期为任务周期的整数倍;窗口长度比循环周期大 200。 配置完成后的界面如图 5.9 所示:

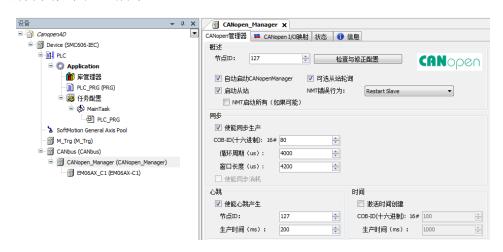


图 5.9 CANopen 主站配置页面

3) 模块配置

双击"EM06AX-C1",进入模块配置界面。

节点 ID: 本例中设置模块 ID 为 1。

勾选"使能专家设置"后,可以看到多项隐藏的参数,一般情况下用户不需要设置这些参数,采用默认配置。配置完成后的界面如图 5.10 所示。

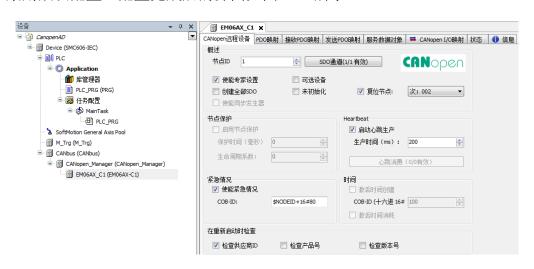


图 5.10 CANopen 模块配置界面

点击 "PDO 映射",显示界面如图 5.11 所示,勾选接收 PDO 和发送 PDO (采用默认配置,不需要修改)。主站与从站之间通过 PDO 交互数据,因此,该选项必须选择。

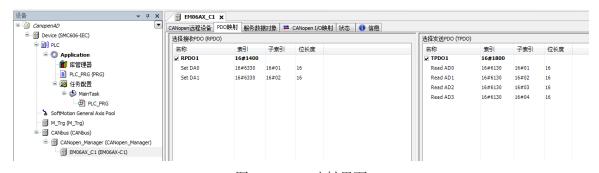


图 5.11 PDO 映射界面

4) 模块拨码设置

从上面的配置过程可以得到: CAN 网络波特率为 1M; 模块节点号(模块 ID 号)为 1; 该模块为网络内的最后一个模块(整个网络内只有一个模块,也为最后一个模块),需要拔上终端电阻。

模块上的拨码按上述要求配置。

5.1.5 应用示例

程序功能:

在 SMC606 控制器上实现对 EM06AX-C1 模块的 DA0 输出, AD0 读取控制。

将 DA0 通道的电压输出连接到 AD0 通道的电压输入;

将 DA0 输出 2V 电压时, AD0 采集到 2V 电压。

将 DA0 输出 5V 电压时, AD0 采集到 5V 电压。

工程源码:

CANopen 扩展- "CANopen_AD"

编辑程序如下:

声明变量: CANopen_DA0、CANopen_AD0、iState。

编写程序,如下图 5.12 所示:

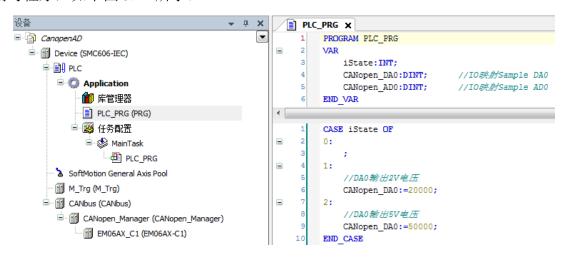


图 5.12 程序编码界面

配置 CANopen I/O 映射:

配置 AD 模块的 "CANopen I/O 映射"参数,配置完成后的界面如下图 5.13 所示:

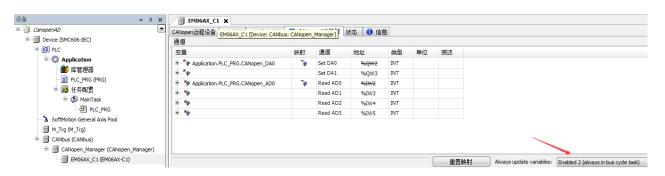


图 5.13 配置 IO 映射

运行程序:

将 iState 设置为 1, DA0 输出 2V 电压, AD0 采集到 2V 电压。

将 iState 设置为 2, DA0 输出 5V 电压, AD0 采集到 5V 电压。

5.2 BASIC 示例

5.2.1 硬件连接

雷赛 SMC604-BAS 控制器的外形如下图 5.14 所示:

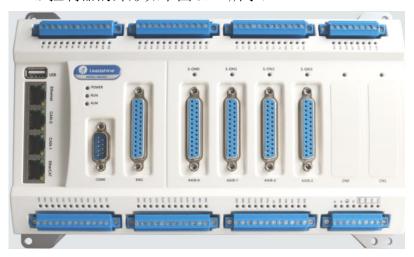


图 5.14 SMC604 外形

设备间的连接:使用超五类带屏蔽双绞线将 SMC604-BAS 的 CAN0 口和 EM06AX-C1 的 CAN0 口相连。如下图 5.15 所示:

图 5.15 SMC604 和扩展模块连接图

5.2.2 添加模块

- (1) 硬件准备:设置模块的波特率(建议 1M),具体操作方法参考本文档 2.2.5 节 SW0 拨码设置;设置模块的 CAN ID 号, 具体操作方法参考本文档 2.2.6 节 SW1 拨码设置;
- (2) 开 SMC BASIC STUDIO 软件,新建工程,详细方法请参考《SMC600 系列控制器用户手册》
 - (3) 置主站的波特率和各模块的波特率一致,如图 5.16 所示

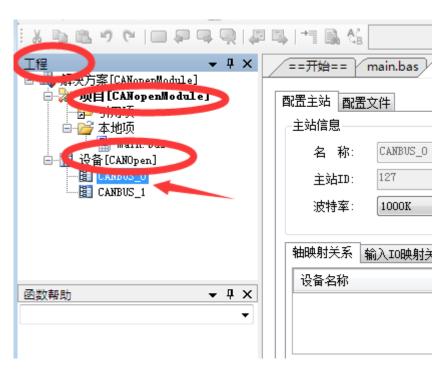



图 5.16 设置主站的波特率

(4) 点击左侧"工程"目录,选中 CANBUS_0,具体路径为"解决方案[]" → "设备[CANopen]" → "CANBUS_0"。在 "CANBUS_0" 上单击鼠标右键,选择"扫描设备",如图 5.17 所示

5.17 扫描从站模块

扫描过程中会弹出"获取从站扫描列表"信息,扫描成功会出现"共扫描到 XX 个设备,是否添加",选择"是",添加成功后,在"CANBUS_0"目录下,可以看到当前的模块名称,表示已经将模块添加到 CAN 总线上。如图 5.18 和 图 5.19 所示

图 5.18 扫描从站节点

图 5.19 扫描从站节点

(5) 为了保证配置文件的一致性,还需要将模块的配置文件添加到系统,方法如下:双击 刚刚添加的模块名称,选择"配置文件"选项卡,依次点击"下载文件"和"复位系统"

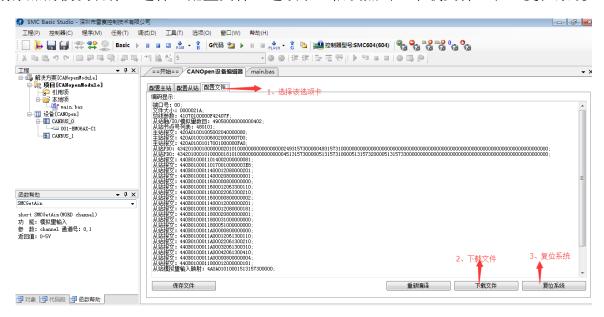


图 5.20 模块配置文件下载

(6) 复位成功后,双击 "CANBUS_0",在右侧"配置主站"选项卡界面"模拟量输入映射关系"和"模拟量输出映射关系",可以看到模块的物理输入输出端口和软件的控制端口的映射关系。

图 5.21 模块 IO 映射关系

(7) 至此,添加过程结束,可按照输入输出的映射关系操作扩展模拟量模块上的输入输出点。

5.2.3 应用例程

(1) 程序功能:

在 SMC604 控制器上控制扩展模块 EM06AX-C1 输出模拟量电压,并读取模拟量电压输入 将模块的模拟量输出信号接到模拟量输入信号

输出模拟量电压 3V, 监控模拟量输入信号

输出模拟量电压 5V, 监控模拟量输入信号

需要的资源:系统自带,不需要其他的资源。BASIC 控制器有模拟量专用的函数来设置和读取模拟量,相关的函数如下:

模拟量输出:

Short SMCSetDAOutput(WORD channel, DOUBLE Vout)

功能: 设置指定通道的模拟量输出值

参数: channel:模拟量输出通道: Vout:设置模拟量输出值

返回值: 错误码

Short SMCGetDAOutput(WORD channel, DOUBLE *Vout)

功能: 读取指定通道的模拟量输出值

参数: channel:模拟量输出通道: Vout:读取模拟量输出值

返回值: 错误码

模拟量输入:

short SMCGetAin(WORD channel)

功 能: 读取指定通道的模拟量输入值

参数: channel 通道号,包括本地通道和扩展通道

返回值: 读取到的模拟量值

工程源码:

```
auto:
undim *
dim ret
ret=-1
dim vout
vout=-1
while true
    if modbus_bit(100)=1 then
        modbus_bit(100) = 0
        SMCSetDAOutput (0,3)
        SMCGetDAOutput (0, vout)
        print vout
endif
    if modbus_bit(101)=1 then
        modbus_bit(101)=0
        SMCSetDAOutput (1,5)
        SMCGetDAOutput (1, vout)
        print vout
    endif
    if modbus_bit(102)=1 then
        modbus_bit(102)=0
        ret=SMCGetAin(2)
        print "ret=", ret
    endif
wend
```

运行程序:

给寄存器赋值: modbus_bit(100)=1,程序会给模拟量输出通道 0 赋值 3,对应电压为 3V,给寄存器赋值: modbus_bit(101)=1,程序会给模拟量输出通道 1 赋值 5,对应电压为 5V,给寄存器赋值:Modbus_bit(102)=1,程序会读取模拟量输入通道 0 的输入值。

深圳市雷赛控制技术有限公司

地 址:深圳市南山区学苑大道 1001 号南山智园 A 3 栋 9 楼

邮 编: 518052

电 话: 0755-26415968

传 真: 0755-26417609

Email: info@szleadtech.com.cn

网 址: http://www.szleadtech.com.cn